Exam Lie Groups in Physics

Date	January 30, 2020
Room	NB 5113.0201
Time	$08: 30-11: 30$
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the four problems are given below
- Illegible handwriting will be graded as incorrect
- Good luck!

Weighting

1a)	6	2 a)	7	3 a)	7	4 a)	7
1b)	6	$2 \mathrm{~b})$	8	$3 \mathrm{~b})$	8	4 b)	8
1c)	6	2c)	7	$3 \mathrm{c})$	7		
1d)	6	2d)	7				
Result $=\frac{\sum \text { points }}{10}+1$							

Problem 1

(a) Provide the definition of a Lie algebra.
(b) Provide the definitions of an invariant subalgebra and a simple Lie algebra.
(c) Give an example of a Lie group encountered in physics that is not simple.
(d) If the coset space G / H forms a group, how are the Lie algebras of G and H related?

Problem 2

Consider the Lie algebra $s u(n)$ of the Lie group $S U(n)$ of unitary $n \times n$ matrices with determinant equal to 1 .
(a) Consider the following direct product of irreps of the Lie algebra $s u(n)$:

$$
\square \otimes \begin{array}{|l|l|}
\hline a & a \\
\hline b & b \\
\hline c & \\
\hline
\end{array}
$$

Write down all allowed sequences ("words") consisting of the letters a, a, b, b, c.
(b) Decompose the above direct product of irreps into a direct sum of irreps of $s u(n)$, in other words, determine its Clebsch-Gordan series.
(c) Do the same direct product but now in reverse order:

(d) Write down the dimensions of the irreps appearing in the obtained decomposition for $s u(3)$ and $s u(4)$. Indicate the complex conjugate and inequivalent irreps whenever appropriate.

Problem 3

Consider the group $O(3)$ of real orthogonal 3×3 matrices.
(a) Show the isomorphism $O(3) \cong \mathrm{Z}_{2} \otimes S O(3)$.
(b) Show that the symmetric and antisymmetric tensors $x_{i} y_{j} \pm x_{j} y_{i}$ do not mix under $O(3)$ transformations.
(c) Argue that the defining representation of $O(3)$ is irreducible and becomes reducible when restricting to an $O(2)$ subgroup.

Problem 4

Consider the four-dimensional representation of the generators of the Lorentz group:

$$
\left(M^{\mu \nu}\right)^{\alpha}{ }_{\beta}=i\left(g^{\mu \alpha} g^{\nu}{ }_{\beta}-g^{\nu \alpha} g_{\beta}^{\mu}\right)
$$

(a) Write down the matrices for the following two cases: $\mu=0, \nu=2$ and $\mu=1, \nu=2$.
(b) Derive an expression for $\exp \left(-i \chi M^{02}\right)$ in terms of hyperbolic cosines and sines, using the expression for M^{02} obtained in part (a). Conclude which Lorentz transformation it corresponds to. Recall that $\cosh x=\left(e^{x}+e^{-x}\right) / 2$ and $\sinh x=\left(e^{x}-e^{-x}\right) / 2$.

